PreEmptive Eum

Application Protection
Why bother?

(...and, no, this is not a rhetorical question)

Why should a developer (or parent
organization) bother to protect their
applications? Given the fact that PreEmptive
Solutions builds application security and risk
management software, you might think that we
are somehow being snarky and rhetorical — but,
please be assured, we are not.

The only way to answer such a question is to
first know what it is that you need protection
from. If the answer is something like “to protect
against reverse engineering or tampering,” that
is not a productive answer. The answer needs
to consider what damage is likely to follow
iffwhen reverse engineering or tampering
should occur. Are you looking to protect
sensitive data? Prevent piracy? Secure
Intellectual Property (IP)? AGAIN — not good
enough — the real answer is going to have to be
tied to lost revenue, regulatory penalties,

operational disruption resulting financial or
other damage, etc. Unless and until you can
answer these questions — it is impossible to
appropriately prioritize your response to these
risks.

If you feel this is too pedantic or too academic,
then (and forgive me for saying this) you are
not the person who should be making these
kinds of decisions. If, on the other hand, you're
not sure how to answer these kinds of
guestions — but you understand (even if only in
an intuitive way) the distinction between
managing risks (damage) versus preventing
events that can increase risk — then | hope the
following distillation of how to approach
managing the unique risks that stem from
developing in .NET and/or Java (managed
code) will be of value.

First consideration: managed code is

The)
easy to reverse engineer, monitor and modif (application) fraits
Yy g ' y Asset
by design — and there are plenty of legitimate R
scenarios where this is a good thing. SR
Your senior management needs to understand
that reverse engineering and executable "
anaged code

monitoring and manipulation is well
understood and widely practiced.

Modification of

behavior via IL
manipulation

Therefore, if this common practice poses any

It is neither a flaw nor an
oversight— the ease with which
managed code can be reverse
engineered and/or modified after
it has been compiled is a well-
understood and expected trait
inherentin all managed code.

Widely practiced, benign use
cases for reverse engineering and
executable modification include
support, debugging, and
instruction.

material risks to your organization, your organization is compelled to take steps to mitigate those risks
— of course, if this basic characteristic of managed code does not pose a material risk — no additional

steps are needed (nor should they be recommended),

Second consideration: reverse engineering, debugging and monitoring tools don’t commit

crimes — criminals do; but criminals have found many ways to commit crimes with these powerful

development utilities.

The

Develop exceptional insight into application behavior to suggestidentity and provenance of bad actors and apps.

(application) Traits Incident
Asset However,
Ll Gl ynauthorized and 1P theft Access to proprietary algorithms, design, and other content.
via reverse ..
engineering malicious use cases
Static analysis of source code to identify coding security gaps.
are also well- probe . (e e
understood and
. . engineering
widely practiced.
Managed code Theft of service Spoof account identity of app developers to hijack (and steal) third party services.
Alter app behavior and/or identify app transfer patterns and practices.

* Counterfeitingand
theft of services have
emerged with the rise
and dominance of
mobile application
adoption

Counterfeit

Modification of
behaviorvia IL
manipulation

Piracy

Malware

Create alternate, unauthorized versions of apps that can include malicious behavior.

Defeat licensing and authentication controls enabling unauthorized use of software.

Include — through code medification and/or injection —unauthorized application behavior.

In order to be able to recommend an appropriate strategy, a complete list of threats is required —
simply knowing that IP theft is ONE threat is not sufficient — if the loss of sensitive data poses an

incremental threat — this qualitatively distinct risk must also be captured.

2 PreEmptive Solutions © 2018

Third consideration: Which of the incident types above are relevant to your specific needs?
How important are they? How can you objectively answer these kinds of questions?

The Likelihood Impact
(application) Traits :
Asset Incident Risk
Access to source '
via reverse

categories

T H P theft] The examples described here are illustrative only. Every organization should
i consider what types of risk assessments are relevant to its objectives.
H V“'"f;‘lb_‘l'w \ Intellectual Risks associated with the inability to enforce patents and trademark infringement and
C N ey
/ Lin \.‘ H Property accelerated competition.
/ P
Managed code - —— | Operational Risk of loss (including risks to financial performance and condition) resulting from inadequate
\\\ Theft of service [N or failed internal processes, people, and systems.
i\ il
\ M \
\:‘\ . ‘." \\ P Risk fac:tors rela_tiye to the Urganizati:)n’s_cr:;m[:xliancz_e obligations, considering laws and
W\ /] ‘\ regulations, policies and procedures, ethics and business conduct standards, and contracts.
\ /| \
o - erfei | \
Modificat f 1 Counterfeit | ! e)]]
b:hall.:i?r ";)I:;?_ \ | \ Information The potential for technology system failures such as processing capacity, access control, data
el \ - { Technology protection, and cybercrime.
Piracy [
\ |
\ (
\ Semni Risks associated with breaches in an organization’s information protection and security
. including infrastructure, applications, operations, and people.

The likelihood of one or ...the impact to an organization should
more of these “incidents” an incident occur defines the actual
occurring combined with ... risk to that organization.

Risk management is a mature discipline with well-defined frameworks for capturing and describing risk
categories; DO NOT REINVENT THE WHEEL. How significant (material) a given risk may be is
defined entirely by the relative impact on well-understood risk categories. The ones listed above are

commonly associated with application tampering, monitoring and reverse engineering - but these are
not universal nor is the list exhaustive.

3 PreEmptive Solutions © 2018

Fourth consideration: How much risk is too much? How much risk is acceptable (what is your

tolerance for risk)? ...and what options are available to manage (control) these various categories of
risk to keep them within your organization’s “appetite for risk?”

Tolerance (or appetite) for risk is
NOT a technical topic — nor are
the underlying risks. For
example, an Android app
developed by 4 developers as a
side project may only be used by
a small percentage of your
clients to do relatively
inconsequential tasks — the
developers may even be external
consultants — so the app itself
has no real IP, generates no
revenue, and is hardly visible to
your customer base (let alone to
your investors). On the other
hand, if the result of a counterfeit
version of that app results in
client loss of data, reputation
damage in public markets, and
regulatory penalties — the trivial
nature of that Android really
won't have mattered.

The Likelihood Impact Tolerance

(application) Traits ' ;
Asset R— Incident : Risk '
Access to source i - H
viareverse categories !
engineering IP theft :
/ Vulnerability Intellectual ;

/ probe \ Property
/ / Social \ yd !

" o i | engineering
anaged code

S Theft of service

Data loss

|
!

~ Operational ‘
1
/.IJ' { . .

7 \ Compliance .
/] \ ,
|) Counterfeit :'I \ w g

behavior via IL \ ."I \ ITn:SI:TC?IEDn .
manipulation |] | - 8Y :
\ Piracy | '

.

When the weight of the likelihood and impact of an “incident” occurring is deemed
to be intolerably high, then the resulting risk must either be avoided entirely (stop
developing in managed code in this example) or, when avoidance is not an option,
the risk must be reduced to a tolerable level through the use of a “control.”

== =7 \\l‘!

Modification of

Malware

To be effective, a control must reduce the combined weight of likelihood and
impact of an incident occurrence to a “tolerable” level.

Controls do not eliminate risks — controls make risks tolerable.

In other words, even if the technical scope of an application may be narrow, the risk — and therefore
the stakeholders — can often be far reaching.

Risk management decisions must be made by risk management professionals — not developers (you
wouldn't want risk managers doing code reviews would you?).

PreEmptive Solutions © 2018

Fifth consideration: what controls are available specifically to help manage/control the risks
that stem from managed code development?

The Controls for Likelihood Impact Tolerance
(application) Traits app hardening
Asset & analytics

, : Incident ': Risk :
Access to source i H i i y
via reverse / : categories

engineering IP theft

Vulnerability
probe

Intellectual
Property

o

Lo

Social N
engineering i
— Operational

N ¢
\\ :
Compliance .

Managed code

Theft of service

Data loss

Modification of Counterfeit
behavior via IL

manipulation

Information
Technology

Piracy

Security

Malware

Controls to mitigate risks stemming from the use of managed code include obfuscation to lower
the likelihood of an incident occurrence (a preventative control) and tamper detection and
defense as well as application monitoring and analytics to reduce the impact should an incident
occur (through faster detection and real-time remediation).

To be effective, the control must combine technology to obfuscate and/or monitor applications,
processes that detail how to consistently use the technology, and policies that dictate when to
invoke these processes — thus ensuring consistent and effective risk mitigation.

Obfuscation is a portfolio of transformations that can be applied in any number of permutations — each
with its own protective role and its own side effects.

Tamper detection and defense as well as regular feature and exception monitoring also have their own
flavors and configurations.

Machine attacks, human attacks, attacks whose goal is to generate compliable code versus those
designed to modify specific behaviors while leaving others in tact all call for different combinations of
obfuscation, rooted device defense (for mobile), tamper defense, and alerts.

The goal is to apply the minimum levels of protection and monitoring required to bring identified risks
levels down to an acceptable (tolerable) level. Any protection beyond that level is “over kill.” Anything
less is wasted effort. ...and this is why mapping all activity to a complete list of risks is an essential first
step.

5 PreEmptive Solutions © 2018

Sixth consideration: the cure (control) cannot be worse than the disease (the underlying risk).

In other words, the obfuscation, anti-debugger, anti-emulator, anti-root and tamper defense solutions
cannot be more disruptive than the risks these technologies are designed to manage.

The) Controls for Likelihood Impact Tolerance
(application) Traits app hardening .
Asset & analytics ; i ;] . s .
(Yr——— ,M Incident ; Risk 1 To be effective, application hardening and

via reverse
engineering

IPthefe categories | analytics controls must:

Vulnerability
probe

* Reduce underlying risk to tolerable levels
WHILE ENSURING THAT THERE IS NO

Intellectual
Property
Social
engineering

Managed code Operational

* Negative impact on technology, process, and/or
policy in other risk categories.

o000

Theft of service
Data loss Compliance

Counterfeit

Madification of
behavior via IL
manipulation

Information
Technology
Piracy
Security The examples described here are illustrative anly. Every
organization should consider what types of risk
assessments are relevant to its objectives.

Malware

Caution! As with any control, app hardening

can introduce its own set of risks; risks that A)
have the potential to be “intolerable” in their a
own right. These risks can originate from any ."

Risks associated with an organization’s product from design
through manufacturing, distribution, and use.

Product defect

Risk factors associated with the delivery or implementation of a project, considering

=

S

la]

:

=]

3 -4
B

E

=

2
\/ - N \,

\
\

Insufficient stakeholders, dependencies, timelines, cost, and other key considerations.
one its three “dimensions” of technology, SRR — T - : — .
: Vendor isks associated with identifying the inputs and logistics to support the creation of products an
process, and/orpo"'q" reliability services, including selection and management of suppliers (due diligence to qualify the supplier).

Focusing on the incremental risks that introducing obfuscation, anti-debugger, tamper defense, and
other real-time detection and response controls can introduce is an essential part of the process. The
following questions are often important to consider (this is a representative subset — not a complete
list):

* Complexity of configuration

* Flexibility to support build scenarios across distributed development teams, build farms, etc.

* Debugging, patch scenarios, extending protection schemes across distinct components

* Marketplace, installation, and other distribution patterns

* Support for different OS and runtime frameworks

* Digital signing, runtime IL standards compliance, and watermarking workflows

* Mobile packaging (or other device specific requirements)

* For commercial products, vendor viability (will they be there for you in 3 years) and support levels
(dedicated trained team? response times?)

So when should you protect your applications?

Only when your organization has well-defined risks that are unacceptably high (financial,
operational, compliance ...) AND the recommended risk management controls (technology +
process + policy) reduce risk levels to acceptable limits WITHOUT introducing unacceptable
incremental risks or expenses.

6 PreEmptive Solutions © 2018

	(…and, no, this is not a rhetorical question)

