

Application Protection

Why bother?
(…and, no, this is not a rhetorical question)

Why should a developer (or parent
organization) bother to protect their
applications? Given the fact that PreEmptive
Solutions builds application security and risk
management software, you might think that we
are somehow being snarky and rhetorical – but,
please be assured, we are not.

The only way to answer such a question is to
first know what it is that you need protection
from. If the answer is something like “to protect
against reverse engineering or tampering,” that
is not a productive answer. The answer needs
to consider what damage is likely to follow
if/when reverse engineering or tampering
should occur. Are you looking to protect
sensitive data? Prevent piracy? Secure
Intellectual Property (IP)? AGAIN – not good
enough – the real answer is going to have to be
tied to lost revenue, regulatory penalties,

operational disruption resulting financial or
other damage, etc. Unless and until you can
answer these questions – it is impossible to
appropriately prioritize your response to these
risks.

If you feel this is too pedantic or too academic,
then (and forgive me for saying this) you are
not the person who should be making these
kinds of decisions. If, on the other hand, you’re
not sure how to answer these kinds of
questions – but you understand (even if only in
an intuitive way) the distinction between
managing risks (damage) versus preventing
events that can increase risk – then I hope the
following distillation of how to approach
managing the unique risks that stem from
developing in .NET and/or Java (managed
code) will be of value.

 2 PreEmptive Solutions © 2018

First consideration: managed code is
easy to reverse engineer, monitor and modify
by design – and there are plenty of legitimate
scenarios where this is a good thing.

Your senior management needs to understand
that reverse engineering and executable
monitoring and manipulation is well
understood and widely practiced.

Therefore, if this common practice poses any
material risks to your organization, your organization is compelled to take steps to mitigate those risks
– of course, if this basic characteristic of managed code does not pose a material risk – no additional
steps are needed (nor should they be recommended),

Second consideration: reverse engineering, debugging and monitoring tools don’t commit
crimes – criminals do; but criminals have found many ways to commit crimes with these powerful
development utilities.

In order to be able to recommend an appropriate strategy, a complete list of threats is required –
simply knowing that IP theft is ONE threat is not sufficient – if the loss of sensitive data poses an
incremental threat – this qualitatively distinct risk must also be captured.

 3 PreEmptive Solutions © 2018

Third consideration: Which of the incident types above are relevant to your specific needs?
How important are they? How can you objectively answer these kinds of questions?

Risk management is a mature discipline with well-defined frameworks for capturing and describing risk
categories; DO NOT REINVENT THE WHEEL. How significant (material) a given risk may be is
defined entirely by the relative impact on well-understood risk categories. The ones listed above are
commonly associated with application tampering, monitoring and reverse engineering - but these are
not universal nor is the list exhaustive.

 4 PreEmptive Solutions © 2018

Fourth consideration: How much risk is too much? How much risk is acceptable (what is your
tolerance for risk)? …and what options are available to manage (control) these various categories of
risk to keep them within your organization’s “appetite for risk?”

Tolerance (or appetite) for risk is
NOT a technical topic – nor are
the underlying risks. For
example, an Android app
developed by 4 developers as a
side project may only be used by
a small percentage of your
clients to do relatively
inconsequential tasks – the
developers may even be external
consultants – so the app itself
has no real IP, generates no
revenue, and is hardly visible to
your customer base (let alone to
your investors). On the other
hand, if the result of a counterfeit
version of that app results in
client loss of data, reputation
damage in public markets, and
regulatory penalties – the trivial
nature of that Android really
won’t have mattered.

In other words, even if the technical scope of an application may be narrow, the risk – and therefore
the stakeholders – can often be far reaching.

Risk management decisions must be made by risk management professionals – not developers (you
wouldn't want risk managers doing code reviews would you?).

 5 PreEmptive Solutions © 2018

Fifth consideration: what controls are available specifically to help manage/control the risks
that stem from managed code development?

Obfuscation is a portfolio of transformations that can be applied in any number of permutations – each
with its own protective role and its own side effects.
Tamper detection and defense as well as regular feature and exception monitoring also have their own
flavors and configurations.

Machine attacks, human attacks, attacks whose goal is to generate compliable code versus those
designed to modify specific behaviors while leaving others in tact all call for different combinations of
obfuscation, rooted device defense (for mobile), tamper defense, and alerts.

The goal is to apply the minimum levels of protection and monitoring required to bring identified risks
levels down to an acceptable (tolerable) level. Any protection beyond that level is “over kill.” Anything
less is wasted effort. …and this is why mapping all activity to a complete list of risks is an essential first
step.

 6 PreEmptive Solutions © 2018

Sixth consideration: the cure (control) cannot be worse than the disease (the underlying risk).
In other words, the obfuscation, anti-debugger, anti-emulator, anti-root and tamper defense solutions
cannot be more disruptive than the risks these technologies are designed to manage.

Focusing on the incremental risks that introducing obfuscation, anti-debugger, tamper defense, and
other real-time detection and response controls can introduce is an essential part of the process. The
following questions are often important to consider (this is a representative subset – not a complete
list):
* Complexity of configuration
* Flexibility to support build scenarios across distributed development teams, build farms, etc.
* Debugging, patch scenarios, extending protection schemes across distinct components
* Marketplace, installation, and other distribution patterns
* Support for different OS and runtime frameworks
* Digital signing, runtime IL standards compliance, and watermarking workflows
* Mobile packaging (or other device specific requirements)
* For commercial products, vendor viability (will they be there for you in 3 years) and support levels
(dedicated trained team? response times?)

So when should you protect your applications?
Only when your organization has well-defined risks that are unacceptably high (financial,
operational, compliance …) AND the recommended risk management controls (technology +
process + policy) reduce risk levels to acceptable limits WITHOUT introducing unacceptable
incremental risks or expenses.

	(…and, no, this is not a rhetorical question)

